
Chapter 6

Continuity

6.1 Uniform convergence

In this section we study in more details the metric of uniform convergence,

introduced in Example 1.5. Recall that if C([a, b]) denotes the set of con-

tinuous functions f : [a, b] −→ R, then

d∞(f, g) = max
x∈[a,b]

|f(x)− g(x)|

is a metric on C([a, b]), known as the metric of uniform convergence (or

∞-metric).

6.2 Uniform convergence of sequence of functions

Let (fn)n∈N denotes a sequence of functions fn : [a, b] −→ R,

(f1(x), f2(x), f3(x), · · · , fn(x), · · · )

In this section we discuss two different types of convergences of sequences

of functions. The first one is the pointwise convergence. Another one, the

most important, is the uniform convergence.

Definition 6.2.1. (Pointwise convergence). A sequence (fn)n∈N con-
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verges pointwise on [a, b] to a limit function f : [a, b] −→ R, if

lim
n−→∞

|fn(x)− f(x)| = 0 ∀x ∈ [a, b]

In this case we often write fn −→ f pointwise on the interval [a, b].

Remark 6.2.2. In other words, fn −→ f pointwise on the interval [a, b] if

fn(x) −→ f(x) for every x ∈ [a, b], in the sense of the standard convergence

in R.

Definition 6.2.3. (Uniform convergence). A sequence (fn)n∈N con-

verges uniformly on the interval [a, b] to a limit function f : [a, b] −→ R,

if

lim
n−→∞

max
x∈[a,b]

|fn(x)− f(x)| = 0

In this case we often write fn −→ f uniformly.

Remark 6.2.4. In other words, fn −→ f uniformly on the interval [a, b] if

d∞(fn, f) −→ 0,

that is fn −→ f with respect to the metric d∞.

It is clear that if fn −→ f uniformly on the interval [a, b] then fn −→ f

pointwise on [a, b]. The converse is not true in general, as it shown in the

following example.

Example 6.2.5. The sequence of continuous functions

fn(x) =
2nx

1 + n2x2

converges pointwise to the limit function f(x) = 0 on the interval [0, 2],

but (fn) does not converge uniformly to f .
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Figure 6.1: The sequence fn(x) = 2nx
1+n2x2

Example 6.2.6. The sequence of continuous functions

fn(x) = xn

converges pointwise on the interval [0, 1] to the discontinuous limit function

f(x) =

0, if x ∈ [0, 1),

1, if x = 1.
(6.1)

The sequence (fn) converges uniformly to f on any interval [0, b] with

b < 1. However, the sequence (fn) does not converge uniformly to f on

the interval [0, 1].

The next theorem shows that the uniform limit of a sequence of contin-

uous functions is a continuous function.

Theorem 6.2.7. (Weierstrass Uniform Convergence theorem) Let fn :
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Figure 6.2: The sequence fn(x) = xn

[a, b] −→ R be a sequence of continuous functions. If (fn)n∈N converges

uniformly on [a, b] to a limit function f : [a, b] −→ R, then f is continuous

on [a, b].

Remark 6.2.8. Theorem 6.2.7 can be used to prove that the sequence

fn(x) = xn does not converge uniformly on [0, 1]. Indeed, all the func-

tions fn are continuous on [0, 1]. Assume that fn −→ f uniformly on [0, 1].

Then by Theorem 6.2.7 the function f must be continuous on [0, 1]. But

from Example 6.2.6 we know that the pointwise limit of the sequence (fn)

is the discontinuous function f defined in (6.1), which is a contradiction.

Example 6.2.9. Find a pointwise limit of the sequence

fn(x) =
xn − 1

xn + 1
on [0, 2]

and the sequence gn(x) = (1− x2)n on [−1, 1]. Are these convergences uni-

form ?
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Figure 6.3: The sequence fn(x) = xn−1
xn+1

Figure 6.4: The sequence gn(x) = (1− x2)n

Theorem 6.2.10. Let fn : [a, b] −→ R be a sequence of continuous func-

tions. If fn −→ f uniformly on [a, b], then

lim
n−→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx (6.2)

If fn −→ f only pointwise on [a, b] but not uniformly then (6.2) may

fail.

Example 6.2.11. For n ≥ 2, define a sequence fn : [0, 1] −→ R by

fn(x) = max

{
n− n2

∣∣∣∣x− 1

n

∣∣∣∣ , 0} .
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Show that fn −→ 0 pointwise on [0, 1], but (6.2) does not hold.

6.3 Uniform convergence of series of functions.

In this section we extend the notions of pointwise and uniform conver-

gence from sequences to infinite series of functions. Let (fn)n∈N denotes a

sequence of functions fn : [a, b] −→ R. For m ∈ N, consider the partial

sum

Sm(x) :=
m∑
n=0

fn(x) = f1(x) + f2(x) + · · ·+ fm(x)

Definition 6.3.1. (Pointwise and uniformly convergent series). We

say that the series of functions

∞∑
n=0

fn(x) (6.3)

1. converges pointwise on [a, b] to the function f : [a, b] −→ R, if

Sm −→ f pointwise on [a, b].

2. converges uniformly on [a, b] to the function f : [a, b] −→ R, if

Sm −→ f uniformly on [a; b].

The limit function f(x) is called the sum of the series and we often write

f(x) =
∞∑
n=0

fn(x);

pointwise (or uniformly) on [a, b].
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Example 6.3.2. (Geometric series). Consider the series

∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + · · ·+ xn + · · ·

By the formula for the partial sum of geometric series, we know that

Sm(x) =
1− xm+1

1− x
.

We see that

lim
m−→∞

Sm(x) =
1

1− x
if |x| < 1.

Moreover, if 0 < r < 1 then

max
x∈[−r,r]

∣∣∣∣Sm(x)− 1

1− x

∣∣∣∣ = max
x∈[−r,r]

|x|m+1

|1− x|
≤ rm+1

1− r
−→ 0 as m −→∞.

We conclude that Sm −→ 1
1−x uniformly on [−r, r]. Therefore, for any

0 < r < 1,
1

1− x
=

∞∑
n=0

xn

uniformly on the interval [−r, r].

Definition 6.3.3. (Absolutely convergent series). We say that the

series of functions ∞∑
n=0

fn(x)

converges absolutely and uniformly on [a, b] if the series of absolute values

∞∑
n=0

|fn(x)|

converges uniformly on [a, b].

The next powerful theorem shows that convergence of the series of
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‖·‖∞−norms of continuous functions implies absolute and uniform conver-

gence of the series and moreover,the sum of the series remains continuous.

Theorem 6.3.4. (Weierstrass M-test for series). Let fn : [a, b] −→
R be a sequence of continuous functions. Suppose that

∞∑
n=0

‖fn‖∞ =
∞∑
n=0

max
x∈[a,b]

|fn(x)| <∞.

Then the series
∑∞

n=0 fn(x) converges absolutely and uniformly on [a, b]

and the sum of the series

f(x) =
∞∑
n=0

fn(x)

is a continuous function on [a, b].

Series of functions are frequently used to define exponential, trigono-

metric and other special functions.

Example 6.3.5. (Exponential series). Consider the series

∞∑
n=0

xn

n!

The sum of this series is called the exponential function and is denoted by

exp(x) or ex. For any r > 0, we will apply to this series the Weierstrass

M-test. We obtain

∞∑
n=0

‖fn‖∞ =
∞∑
n=0

max
x∈[a,b]

||x|
n

n!
<∞

Then we conclude that the series converges absolutely and uniformly on
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the interval [−r, r]. Moreover, the sum of the series

exp(x) =
∞∑
n=0

xn

n!

is a continuous function.

Exersice. (Fourier type series). On the interval [−π, π], consider the

series ∞∑
n=0

sin(2nx)

2n
.

Prove that

f(x) :=
∞∑
n=0

sin(2nx)

2n

defines a continuous function on [−π, π].

Solution. By the Weierstrass M-test, using the fact that |sin(t)| ≤ 1 for

any t ∈ R, we obtain

∞∑
n=0

max
x∈[−π,π]

∣∣∣∣sin(2nx)

2n

∣∣∣∣ ≤ ∞∑
n=0

2−n = 2

Hence the series converges uniformly on [−π, π] to a continuous function

f(x) := sin(2nx)
2n .

The next two theorems provide a justification for formal integration and

differentiation of the series ”term by term”.

Theorem 6.3.6. Let fn : [a, b] −→ R be a sequence of continuous func-

tions. Assume that

f(x) =
∞∑
n=0

fn(x);

uniformly on [a, b]. Then the function f : [a, b] −→ R is also continuous
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and ∫ b

a

f(x)dx =
∞∑
n=0

∫ b

a

fn(x)dx

Theorem 6.3.7. Let fn : [a, b] −→ R be a sequence of continuously differ-

entiable functions. Assume that

f(x) =
∞∑
n=0

fn(x);

pointwise on [a, b]. Assume in addition that that the series of derivatives∑∞
n=0 f

′
n(x) converges absolutely and uniformly on [a, b]. Then the function

f : [a, b] −→ R is continuously differentiable on [a, b] and

f ′(x) =
∞∑
n=0

f ′n(x)

Example 6.3.8. Prove that (exp(x))′ = exp(x). Solution. Formally dif-

ferentiating term by term, we obtain

(exp(x))′ =
∞∑
n=0

(
xn

n!

)′
=

∞∑
n=1

xn−1

(n− 1)!
= 1 +

x

1
+
x2

2!
+
x3

3!
+ · · · = exp(x)

Since the series of derivatives

∞∑
n=1

xn−1

(n− 1)!

converges absolutely and uniformly to exp(x) on any interval [−r, r] (see

Example 6.3.5), formal differentiation is justified by Theorem 6.3.7.
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